The Physics of Racing, Part 3:
Basic Calculations

Brian Beckman

physicist and member of
No Bucks Racing Club

P.O. Box 662
Burbank, CA 91503

©Copyright 1991

In the last two articles, we plunged right into some relatively complex
issues, namely weight transfer and tire adhesion. This month, we regroup
and review some of the basic units and dimensions needed to do dynamical
calculations. Eventually, we can work up to equations sufficient for a full-
blown computer simulation of car dynamics. The equations can then be
‘doctored’ so that the computer simulation will run fast enough to be the
core of an autocross computer game. Eventually, we might direct this series
of articles to show how to build such a game in a typical microcomputer
programming language such as C or BASIC, or perhaps even my personal
favorite, LISP. All of this is in keeping with the spirit of the series, the Physics
of Racing, because so much of physics today involves computing. Software
design and programming are essential skills of the modern physicist, so much
so that many of us become involved in computing full time.

Physics is the science of measurement. Perhaps you have heard of highly
abstract branches of physics such as quantum mechanics and relativity, in
which exotic mathematics is in the forefront. But when theories are taken
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to the laboratory (or the race course) for testing, all the mathematics must
boil down to quantities that can be measured. In racing, the fundamental
quantities are distance, time, and mass. This month, we will review basic
equations that will enable you to do quick calculations in your head while
cooling off between runs. It is very valuable to develop a skill for estimating
quantities quickly, and I will show you how.

Equations that don’t involve mass are called kinematic. The first kine-
matic equation relates speed, time, and distance. If a car is moving at a
constant speed or velocity, v, then the distance d it travels in time ¢ is

d=vwl

or velocity times time. This equation really expresses nothing more than the
definition of velocity.

If we are to do mental calculations, the first hurdle we must jump comes
from the fact that we usually measure speed in miles per hour (mph), but
distance in feet and time in seconds. So, we must modify our equation with
a conversion factor, like this

miles 5280 feet /mile
d (feet) = v 3600 seconds /hour

e t (seconds)

If you “cancel out” the units parts of this equation, you will see that
you get feet on both the left and right hand sides, as is appropriate, since
equality is required of any equation. The conversion factor is 5280/3600,
which happens to equal 22/15. Let’s do a few quick examples. How far
does a car go in one second (remember, say, “one-one-thousand, two-one-
thousand,” ete. to yourself to count off seconds)? At fifteen mph, we can see
that we go

®

d = 15 mph times 1 sec times 22/15 = 22 feet

or about 1 and a half car lengths for a 14 and 2/3 foot car like a late-model
Corvette. So, at 30 mph, a second is three car lengths and at 60 mph it
is six. If you lose an autocross by 1 second (and you'll be pretty good if
you can do that with all the good drivers in our region), you're losing by
somewhere between 3 and 6 car lengths! This is because the average speed
in an autocross is between 30 and 60 mph.
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Everytime you plow a little or get a little sideways, just visualize your
competition overtaking you by a car length or so. One of the reasons au-
tocross is such a difficult sport, but also such a pure sport, from the driver’s
standpoint, is that you can’t make up this time. If you blow a corner in a
road race, you may have a few laps in which to make it up. But to win an
autocross against good competition, you must drive nearly perfectly. The
driver who makes the fewest mistakes usually wins!

The next kinematic equation involves acceleration. It so happens that
- the distance covered by a car at constant acceleration from a standing start

is given by
1
d=~= 2
—2at

or 1/2 times the acceleration times the time, squared. What conversions
will help us do mental calculations with this equation? Usually, we like
to measure acceleration in Gs. One G happens to be 32.1 feet per second
squared. Fortunately, we don’t have to deal with miles and hours here, so
our equation becomes,

d (feet) = 16a (Gs) t (seconds)?

roughly. So, a car accelerating from a standing start at G, which is a typical
number for a good, stock sports car, will go 8 feet in 1 second. Not very far!
However, this picks up rapidly. In two seconds, the car will go 32 feet, or
over two car lengths.

Just to prove to you that this isn’t crazy, let’s answer the question “How
long will it take a car accelerating at %G to do the quarter mile?” We invert
the equation above (recall your high school algebra), to get

t = 1/d (feet) 16a (Gs)

and we plug in the numbers: the quarter mile equals 1320 feet, a = 3G,
and we get ¢ = /1320/8 = /165 which is about 13 seconds. Not too

unreasonable! A real car will not be able to keep up full 3G acceleration for
a quarter mile due to air resistance and reduced torque in the higher gears.
This explains why real (stock) sports cars do the quarter mile in 14 or 15

seconds.



The more interesting result is the fact that it takes a full second to go
the first 8 feet. So, we can see that the launch is critical in an autocross.
With excessive wheelspin, which robs you of acceleration, you can lose a
whole second right at the start. Just visualize your competition pulling 8
feet ahead instantly, and that margin grows because they are ‘hooked up’
better.

For doing these mental calculations, it is helpful to memorize a few
squares. 8 squared is 64, 10 squared is 100, 11 squared is 121, 12 squared
is 144, 13 squared is 169, and so on. You can then estimate square roots in
your head with acceptable precision.

Finally, let’s examine how engine torque becomes force at the drive wheels
and finally acceleration. For this examination, we will need to know the mass
of the car. Any equation in physics that involves mass is called dynamic, as
opposed to kinematic. Let’s say we have a Corvette that weighs 3200 pounds
and produces 330 foot-pounds of torque at the crankshaft. The Corvette’s
automatic transmission has a first gear ratio of 3.06 (the auto is the trick set
up for vettes—just ask Roger Johnson or Mark Thornton). A transmission is
nothing but a set of circular, rotating levers, and the gear ratio is the leverage,
multiplying the torque of the engine. So, at the output of the transmission,
we have

3.06 x 330 = 1010 foot-pounds

of torque. The differential is a further lever-multiplier, in the case of the
Corvette by a factor of 3.07, yielding 3100 foot pounds at the center of the
rear wheels (this is a lot of torque!). The distance from the center of the
wheel to the ground is about 13 inches, or 1.08 feet, so the maximum force
that the engine can put to the ground in a rearward direction (causing the
ground to push back forward—remember part 1 of this series!) in first gear
is
3100 foot-pounds/1.08 feet = 2870 pounds

Now, at rest, the car has about 50/50 weight distribution, so there is about
1600 pounds of load on the rear tires. You will remember from last month’s
article on tire adhesion that the tires cannot respond with a forward force
much greater than the weight that is on them, so they simply will spin if you
stomp on the throttle, asking them to give you 2870 pounds of force.

We can now see why it is important to squeeeeeeeze the throttle gently
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when launching. In the very first instant of a launch, your goal as a driver
is to get the engine up to where it is pushing on the tire contact patch at
about 1600 pounds. The tires will squeal or hiss just a little when you get
this right. Not so coincidentally, this will give you a forward force of about
1600 pounds, for an F = ma (part 1) acceleration of about 3G, or half the
weight of the car. The main reason a car will accelerate with only 3G to
start with is that half of the weight is on the front wheels and is unavailable
to increase the stiction of the rear, driving tires. Immediately, however, there
will be some weight transfer to the rear. Remembering part 1 of this series
again, you can estimate that about 320 pounds will be transferred to the rear
immediately. You can now ask the tires to give you a little more, and you
can gently push on the throttle. Within a second or so, you can be at full
throttle, putting all that torque to work for a beautiful hole shot!

In a rear drive car, weight transfer acts to make the driving wheels capable
of withstanding greater forward loads. In a front drive car, weight transfer
works against acceleration, so you have to be even more gentle on the throttle
if you have a lot of power. An all-wheel drive car puts all the wheels to work
delivering force to the ground and is theoretically the best.

Technical people call this style of calculating “back of the envelope,”
which is a somewhat picturesque reference to the habit we have of writing
equations and numbers on any piece of paper that happens to be handy. You
do it without calculators or slide rules or abacuses. You do it in the garage
or the pits. It is not exactly precise, but gives you a rough idea, say within
10 or 20 percent, of the forces and accelerations at work. And now you know
how to do back-of-the-envelope calculations, too.



