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In this installment, we review the other side of the magic formula: the one that computes
lateral or cornering forces from slip angles (or grip angles). This formula is sufficiently
similar to the longitudinal version of Part 21 that we can skip many preliminaries. But it’s
sufficiently different as to require careful exposition, leading us to define coordinate frames
that will serve us throughout the rest of the Physics of Racing series. This installment will be
one to keep on hand for future reference.

Diving right in, just like its longitudinal sibling, this formula requires some magical constants,
fifteen of them this time. Again, from Genta’s possible-Ferrari data sheet:
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where N is Newton, KN is KiloNewton, and MN is MegaNewton. As with the longitudinal
magic formula, there are lots of zeros in this particular sample case, but let us not confuse
particulars with generalities. The formula can account for much more general cases.

The first helper is the peak, lateral friction coefficient x,, = a,F, +a, , measured in inverse

Kilos if F, is in KN. Nextis D =y F,, which is a factor with the form of the Newtonian

model: normal force times coefficient of friction. In our sample, q, is zero, so 4, acts

exactly like a Newtonian friction coefficient. In all cases, we should expect @,F, to be much

smaller than a, so that it will be, at most, a small correction to the Newtonian behavior.

To get the final force, we correct D with the following empirical factor:
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This has exactly the same form as the empirical correction factor in the longitudinal version,
but the component pieces, S, B, and E are different, here.

S = adcgmcs + asydcgrecs * a'JF; + o

where @ is the slip angle and ¥ is the camber angle of the wheel. In practice, we must

carefully account for the algebraic signs of the camber angles so that the forces make sense
at all four wheels. The usual negative camber, by the ‘shop’ definition, as measured on the
wheel-alignment machine, will generate forces in the positive Y-direction on the right-hand
side of the car and in the negative Y-direction on the left-hand side of the car. This
comment makes much more sense after we’ve covered coordinate frames, below.

As before, we get B from a product, albeit one of greatly different form

Ba,D = a, sin[Ztan'i (F./a, ):I(l —agly|)
where |}'I is the absolute value of the camber angle, that is, a positive number no matter
what the sign of y . This gives

Ba,D _ @sin [2tan” (F./a,) ](1-asl7])
aQD aoouyp'Fz

B =

Almost done; include E = a,F, +a, and sneak in an additive correction for ply steerand
conicity, which we’ll leave undefined in this article:

S, = [(all.lF.- +a1|.2)y+a|2:|Fz ta;,
To arrive at the final formula
F, = Dsin(a,tan” {SB+E[ tan" (5B)-sB1})+s5,

This form is almost identical—in form—to the longitudinal version of the magic formula.
The individual subcomponents are different in detail, however.

The most important input is the slip angle, @ . This is the difference between the actual
pathline of the car and the angle of the wheel. To be precise, we must define coordinate
systems. We’ll stay close to the conventions of the Society of Automotive Engineers (SAE),
as published by the Millikens in Race Car Vebicle Dynamics. Note that this may differ from
some frames we've used in the past, but we’re going to stick with this set. There’s a lot of
intense verbiage in the following, but it’s necessary to define precisely what we mean by
wheel orientation in all generality. Only then can we measure slip angle as the difference
between the path heading of the car and the wheel orientation.

First, is the EARTH frame, whose axes we write as {X,Y,Z} . The Z axis is aligned with
Earth’s gravitation and points dowmward. The origin of EARTH is fixed w.r.t. the Earth and
the X and Y axes point in arbitrary, but fixed, directions. A convenient choice at a typical
track might be the center of start/finish with X pointing along the direction of travel of the
cars up the main straight. All other coordinate frames ultimately relate back to EARTH,
meaning that the location and orientation of every other frame must be given w.r.t. EARTH,
directly or indirectly.
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The next coordinate frame is CAR, whose axes we write as {x, ¥, z} . This frame 1s fixed

w.r.t. the sprung mass of the car, that is the body, with x running from tail to nose, y to

driver’s right, and z downward, roof through seat. Its instantaneous orientation w.r.t.
EARTH is the heading, y . Precisely, consider the line formed by the intersection of

EARTH’s XY plane with CAR’s xz plane. The angle of the that line w.r.t. EARTH’s X
axis is the instantaneous heading of the car. It becomes undefined only when the car it
points directly up—standing on its tail—or directly down—standing on its nose. To
emphasize, heading is measured in the EARTH frame.

The next coordinate frame is PATH. The velocity vector of the car traces out a curve in 3-
dimensional space such that it is tangent to the curve at every instance. The X-direction of
PATH points along the velocity vector. The Z-direction of PATH is at right angles to the X
direction and in the plane formed by the velocity vector and the Z-direction of EARTH.
The Y direction of PATH completes the frame such that XYZ form an orthogonal, right-
handed triad. The path of the car lies instantaneously in the XY plane of PATH. PATH
ceases to exist when the car stops moving. Path heading is the angle of the projection of
the velocity vector on EARTH’s XY w.r.t. the X-axis of EARTH. Milliken calls this course
angle, v (Greek upsilon). Path heading, just like heading, is measured in the EARTH frame.
The sideslip angle of the entire vehicle is the path heading minus the car heading, v -y .

This is positive when the right side of the car slips in the direction of travel.

The next set of coordinate frames is ROAD,, whete i varies from 1 to 4; there are four

frames representing the road under each wheel, numbered as 1=Left Front, 2=Right Front,
3=Left Rear, 4=Right Rear. Each ROAD, is located at the force center of its cotresponding

contact patch at the point R; = (R;Y R, R,.Z) w.r.t. EARTH. This point moves with the
vehicle, so, more pedantically, the origin of ROAD; is R, (I) written as a function of time.
To get the X and Y axes of ROAD;, we begin with a temporary, flat, coordinate system
called TA, aligned with EARTH and centered at R;, then elevate by an angle

90" <& <90°, to get temporary frame TB;, and bank by an angle —90° < # <90’ in that
order, as illustrated below:
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Consider any point P in space with coordinates P = (PX,PY,PZ) w.r.t. EARTH. A little
reflection reveals that its location w.r.t. TA; is P,; =P —R,, just subtracting coordinates

component-by-component. To get coordinates in TB; , we multiply by the orthogonal

matrix (once again, see www.britannica.com for brush-up) that does not change the Y
components, but increases the Z and decreases the X components of points in the first
quadrant for small, positive angles, namely:

cose 0 -sineg

0 1 0
sine 0 cose¢

We pick this matrix by inspection of the figure above or by application of the right-hand-rule
(yup, see britannica) Finally, to bank the system, we need the orthogonal matrix that does
not change the X components, but increases the Y and decreases the Z components of first-
quadrant points for small, positive angles, namely:

1 0 0

0 cosf sing

0 -sinf cospf
In case you missed it, we snuck in a reliable, seat-of-the-pants method for getting the signs
of orthogonal matrices right. In any event, given P and R;, we compute the coordinates,

P, , of the point P in ROAD, as follows:

cos & 0 —sing \(P*-R/
Y . . . Y _pt
P! |=| sinBsing cosB sinfcose P’ —-R;

P. | \cosfsing -sinf cosfcose P’ —R/
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If the angles are small, cos& ~ 1, siné ~ &, and the matrix can be simplified to

P 1 0 -g)(P'-Rf

Pl|=|pe 1 B P’ -R/

e -p 1 )| PP-R/
Even at 20 degtees, the etrors are only about 6% in the cosine and 2% in the sin, resulting in
a maximum error of 12% in the lower right of the matrix. This matrix approximation s
suitable for the majority of applications. One feature of orthogonal matrices is that their

inverse is their franspose, that is, the matrix derived by flipping everything about the main
diagonal running from upper left to lower right. In the small-angle approximation, we get

1 0 -£)(1 Be &) [1+€ 0 0
ge 1 Bllo 1 -pgl=| 0 1+p(1+&) B
e B 1)\-¢ B 1 0 pe’ 1+ B +¢&°

The right-hand side is very close to the unit matrix because the squares of small angles are
smaller, yet. With the inverse matrix we can convert from coordinates in ROAD, to
coordinates in EARTH:

p* 1 Be e\ (Py) (R

P'|=| 0 1 -B||Py|+| R/
P4l \=e B 1 )\P2) |RY

The last set of coordinate frames is WHEEL,. As with ROAD,, there is one instance per
wheel. WHEEL, is centered at the wheel hub. Under normal rolling, the coordinates of its
origin in ROAD; are Wy, = (0,0,—R,) , where R, is the loaded radius of the tire-wheel

combination. Pedantically, R, should be corrected for elevation and banking, but such

corrections would be small for ordinary angles—on the order of 2—cos fcose —plus it
seems 7ot to be standard practice (I can find no reference to it in my sources). More
important is the orientation of WHEEL, . Consider the plane occupied by the wheel itself.

This plane intersects ROAD; in a line that defines the X direction of WHEEL, , with the

positive direction being as close to that of travel as possible. The Y direction points to
driver’s right. The wheel plane is tilted by a camber angle, y , about the X-axis of the

WHEEL coordinate system. To emphasize: WHEEL,; does not include wheel camber,

and it differs from ROAD only by a rotation about ROAD’s Z axis that accounts for the
pointing direction of the wheel.

At this point, you should create a mental picture of these coordinate frames under typical
racing conditions. Picture a CAR frame yawed at some heading w.r.t. EARTH—and perhaps
pitched and rolled a bit; a PATH frame aligned at some slightly different path heading; and
individual ROAD and WHEEL frames under each tire contact patch, where the ROAD
frames are perhaps tilted a bit w.r.t. EARTH and the WHEEL frames are aligned with the
wheel planes but coplanar with the ROAD frames. For a car traveling on a flat r(.)ad ata
stable, flat attitude, the XY planes of CAR, PATH, and EARTH would all coincide and

Physics of Racing 22 2/27/02 -5-



would differ from one another only in the yaw angles y and v. When some tilting is
engaged, ¥ and v ate still defined by the precise projection mechanisms explained above.

Now, imagine the X-axis of CAR projected on the XY plane of each WHEEL frame and
translated—without changing its direction—to the origin of WHEEL. The angle of
WHEEL’s X axis, which is the same as the plane containing the wheel, w.r.t. the projection
of CAR’s X axis, defines the steering angle, 0, of that wheel. Finally, imagine PATH’s X
axis projected onto the XY plane of WHEEL in exactly the same way. Its angle w.r.t. to the
X axis of WHEEL, in all generality, defines the slip angle. Since WHEEL is tilted w.r.t.
gravitational down, the load, F,, on the contact patch, which we need for the magic formula,
must be computed in WHEEL. It will be smaller than the total weight, W, by factors of

cos f# and cos &, which are obviously unity under the small-angle approximation.

At last, we can plot the magic formula:

The hotizontal axis measures slip angle, in degrees. The vertical axis measures lateral,
cornering force, in Newtons. The deep axis measures vertical load on the contact patch, in
KiloNewtons. We can see that these tires have a peak at about 4 degrees of slip and that
cornering force goes down as slip goes up on either side of the peak. On the high side of the
peak, we have dynamic understeer, where turning the wheel more makes the situation worse.
This is a form of instability in the control system of car and driver.

As a final comment, let me say that I am somewhat dismayed that the magic formula does
not account for any variation of the lateral force with speed. Intuitively, the forces generated
at high speeds must be greater than the forces at low speed with the same slip angles.
However, the literature—sometimes explicitly, and sometimes by sin of omission—states
that the magic formula doesn’t deal with it. One of the reasons is that, experimentally, effects
of speed are extremely difficult to separate from effects of temperature. A fast-moving tire
becomes a hot tire very quickly on a test rig. Another reason is that theotetic.al data is us.ually
closely guarded and is not likely to make it into a consensus approximation like the magic
formula. This is a fact of life that we hope will not affect our analyses too adversely from this

point on.
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