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Driving a car is a classic problem in control Here, we mean control in the technical sense of
control theory, an established branch of engineering science (once again, I find
www.Britannica.com to have a very nice, brush-up article on that term). In a more-or-less
continuous fashion, the driver compares desired direction, speed, and acceleration with
actual direction, speed, and acceleration. The driver uses visual input to sense actual
direction and speed; and uses visceral, inertial feedback—the butt sensor—for actual
acceleration. When the actual differs too much from the desired, the driver applies throttle,
brake, steering, and gear selection to change the actual. These inputs cause the tires to react
with the ground, which pushes back against the tires, and through the suspension, pushes
the body of the car and driver. Drivers in high-speed circumstances can also generate desired
aerodynamic forces, as in slipstreaming, in the “slingshot pass,” and in the Earnhardt TIP
maneuver, where the driver “takes the air off” the spoiler of the car in front of him.

Tires generate forces by sticking and sliding and everything in between. They transmit these
forces to the wheels by elastic deformation. The elastic deformation is extremely complex
and theoretical computation requires numerical solution of finite-element equations.
However, despite fierce trade secrecy, industry and academia have reached apparent
consensus in recent years on a formula that summarizes experimental and theoretical data.
This so-called magic formula is not a solution to equations of motion—a solution in such a
form is not feasible. It’s just a convenient fitting of commonplace mathematical functions to
data. It allows one to compute forces at a higher precision than something like RARS (see
parts 16 and 19 of the Physics of Racing [PAOR]), but without integrating equations.
Therefore, forces can be computed within a reasonable time, say in a real-time simulation

program.

To understand the magic formula, we need first to define its inputs, which include sZip. Slip
is an indirect measure of the fraction of the contact patch that is sticking. It is frequently
asserted in the literature that a tire with no slip at all cannot create forces. It has taken me a
very long time to accept this assertion. Why can I steer a tin-toy car with metal tires on a
hard surface like Formica? If there is any slip in such tires, it is microscopic, yet there are
sufficient forces to brake and steer, even if just a little. I finally caved in when I realized that
the forces are minute, also. If there is any friction between the tire and the surface, there
MUST be slip, as it is defined below. Though to a very small degree, the Formica and the
tiny contact patches of the tin tires actually twist and stretch each other. The only way to
eliminate slip completely is to eliminate GRIP completely. Any grip, and you will have slip.

There are two, slightly different flavors of the magic formula. The longitudinal one is the

subject of this entire installment of PhOR, and we cover the lateral one m the next
installment. Longitudinal slip is along the mean plane of the wheel and might also be called
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circumferential or fangential. It creates braking and accelerating forces. Lateral slip is our old
friend grip angle [PhOR-10], and it generates cornering forces.

We write longitudinal slip as 0. It’s defined by the acual angular velocity, w, of a wheel plus
tire under braking or acceleration, compatred to the corresponding angular velocity of the
same wheel plus tire when rolling freely. We write the free-rolling angular velocity as

@, =V/R, ,where V is the current, instantaneous velocity of the hub centerline of the

wheel with respect to the ground, and R, is the effective radius, a constant defined below.

Since the dimensions of ¥ are length/time, and the dimensions of any radius are length,
the ratio, @, =V /R, , has dimensions of inverse time. In fact, it should be viewed as

measuring radians per unit time, radians being the natural, dimensionless measure of angular
rotation. There are 27 radians in one rotation or one circumference of a circle, just as the
length of the circumference is 277 times the radius.

Let’s begin the discussion of longitudinal slip with a question. Consider a wheel-tire
combination with 13-inch radius or 26-inch diameter, say a 255-50/16 tite on a 16-inch rim.
The “50” in the tire specification is the ratio of the sidewall height to the tread width, which
is also written into the specification as 255, millimeters understood. We get a sidewall height
of 50 percent of 255 mm, which is 5.02 inch. Therefore, the total, unloaded radius, half of
the tread-to-tread diameter, is about 5+16/2 = 13 Inch. Now consider a rigid tire of the
same radius, made, say, of steel or of wood with an iron tread like old Western wagon
wheels. The question is whether, given a certain constant hub velocity, pneumatic tires spin
faster than, slower than, or at the same speed as equivalent rigid tires?

At first glance, one might say, “Well, faster, obviously. Since the pneumatic tire compresses
radially under the weight of the car, its radius is actually smaller than the unloaded radius at
the point of contact, where it sticks and acquires linear velocity equal in magnitude and
opposite in direction to the hub velocity. Since smaller wheels spin faster than larger ones at
the same speed, the pneumatic tire spins faster than the equivalent rigid tire of the same
unloaded radius. Let the unloaded, natural radius of the pneumatic tire be R, also the radius
of the equivalent solid tire. If the hub has velocity V', the solid tire spins with angular
velocity @ =V/R . Since the loaded radius, of the pneumatic tire, R, is smaller than R ,

V/R, , the angular velocity of the loaded pneumatic tire, must be larger than V/ IR >

This is partly correct. The pneumatic tire-wheel combination does spin faster than a rigid
wheel of the same unloaded radius, but it does #of spin as fast as a rigid wheel of the same
loaded radius, which is the height of the hub center off the ground under load. The reason is
that the tire also compresses crumferentially or tangentially, setting up complex longitudinal
twisting in the sidewall. The tangential speed of a particle of tread varies as the particle goes
around the circumference of the tire.

Let’s mentally follow a piece of tread around as the wheel, not necessarily the tire, turns at a
constant radial velocity, @, . Imagine a plug of yellow rubber embedded in the tread, so that

you could visually track it or photograph it with a movie camera or strobe system as it moves
around the circumference. The rubber of the tread does not travel at constant speed, even
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though the wheel supporting the tire does. At the top of the tire, the radius is almost exactly
R, the unloaded radius, so the tread moves with tangential velocity R, . As the yellow plug
rolls around and approaches the contact patch from the front, it slows down in the bunched
up area at the /kading edge of the contact patch—just forward of it. There 7s a bunched-up
area, because the tire is made up of elastic material that gets squeezed and stretched out of
the contact patch and piles up ahead of the contact patch as it rolls into it from the direction
of the leading edge. Eventually, the plug enters the patch, in the center of which it must
move at speed R,®, relative to the hub center, that is, backwards at a speed dictated by the
loaded radius and the wheel velocity. We’ve assumed that the plug is not slipping on the
ground at the point where it has speed R,@, with respect to the hub. This means that it has

speed zero with respect to the ground at that point.

The average of the tangential velocities around the wheel defines the effective radius, R,, as
follows. Let 8 measure the angulat position, from 0 to 27 , around the wheel. Suppose we
knew the tangential velocity with respect to the hub center, V/ (6 ), at every 6. We could

easily measure this with our strobe light and cameras. V' (0) gives us the radius at every
angular position via the equation V/ (9) / w, = R(0), where @, is the constant angular
velocity of the wheel. The average would be computed by the following integral:

l 2r 1 n
R=—| R(6)d8=——| V(60)doO
= b RlO)E= - (7 (0)

Let’s run some numbers. 10 mph is 14% feet/second or 176 inches/second. With an

unloaded circumference of 267 inch/revolution, we get 176/ 267 =2.154 revs per second,
or 129 RPM for each 10 MPH. Under ordinary circumstances, the effective radius will be no
more than a few percent less than then the unloaded radius, and the RPMs should be, then, a
few percent more than 129 RPM per 10 MPH. At 100 MPH, the tire is under considerable
stress and spins at something over 1,300 RPM.

Now we’re in a position to define longitudinal slip, written 0~. We want a quantity that
vanishes when the wheel rolls at constant speed, increases when the wheel accelerates the car
by pulling the contact patch backwards, and decreases below zero when then wheel brakes
the car by pushing the contact patch forward. Under acceleration, the wheel and tire
combination will tend to spin a little faster than it would do while free rolling. We already
know that, for a given V , the free-rolling angular velocity is @, =V/R, , by definition. The
actual angular velocity, w, then, is higher under acceleration. So, if we know V , w, and the
constant R,, then we can define the longitudinal slip as the ratio, minus 1, so that it’s zero

under free-rolling conditions:

0} [0 @R, -V
o= 21 = —-I =
o, V/R, Vv
2/27/02 =3
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Just looking at this formula, a free-rolling wheel has @ = @,, 0 =0, a locked-up wheel
under braking has @ =0, o =-1, and an accelerating wheel has a positive o of any value.

The magic formula yields the longitudinal force, in Newtons, given some constants and
dynamic inputs. The formula takes eleven empirical numbers that characterize a particular

tire {bo1b| , -,bm} . The dynamic parameters are , F,, or weight, in KiloNewtons on the tire,

and the instantaneous slip, o . The eleven numbers are measured for each tire. We borrow
an example from Motor V'ehicle Dynamics by Giancarlo Genta. On page 528, he offers the
following numbers for a car that appears to be a Ferrari 308 or 328, to which I have added
dimensions:

b, | 1.65 | dimensionless ! i
b, 0 | 1/MegaNewton by | O 1/ ( KI'IONGWIOH)
b, | 1688 1/Kilo b, | 0 | 1/KiloNewton
b, 0 | 1/MegaNewton b, | -10 | dimensionless
b, | 229 I/Kilo by | 0 1/. KlloT\ilewtOn
b, 0| 1/KiloNewton b, | 0 | dimensionless

Though the majority of these values are zero for the tires on this car, it is by no means
always the case. In fact, the ‘large-saloon’ example just before the (alleged) Ferrari in Genta’s
book has no zeros.

We build up the magic formula in stages. The first helper quantity is u, =bF, +b,. This is
an estimate of the peak, longitudinal coefficient of friction, fitted as a linear function of
weight (see Part 7 of PhORs). From this definition, we begin to see what’s going with the
dimensions. A typical, streetable sports car might weigh in at 3,000 lbs, which is about
3,000/2.2 = 1,500 * 0.9 = 1,350 kg, which is about 1,350 * 9.8 = 13,200 Newtons, or 13.2
KiloNewtons (look, ma, no calculator!). Let’s assume each tire gets a quarter of that to start
off with, or 3.3 KN. b, multiplies that number to give us something with dimensions of
KiloNewton/MegaNewton, which we write simply as 1/Kilo (inventing units on-the-fly, one
Mega = 1 Kilo squared). b, has the same dimensions, so it’s kosher to add it in, yielding

4, =1688/Kilo in this case. The next step is the helper D = U, F, , which will be in

Newtons. We now see the reason for the 1/Kilo unit. In our case, we get about D =(1700-
12)*3.3=5610-40=5570 N. The important point is that D is linearin F, so u, acts,

mathematically, like a coefficient of friction, as promised. b, is a pretty direct measurement

of stickiness, times 1,000 for convenience. This model tire has a coefficient of friction of
almost 1.7! Not my data, man.

The next step is to compute the product of a new helper, B, times b, and the
aforecomputed D . The magicians who created the formula tell us that
Bb,D = (1331‘7;2 + b4Fz)exp (=bsF.) . This slurps up a few more of the magical eleven
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empirical numbers, and a pattern emerges. These b, numbers serve as coefficients in

polynomial expressions over F,. So, b;F, is dimensionless, as must be the argument of the

z

exponential function. b,F’ +b,F, has dimensions of Newtons, as does the entire product.
Therefore, B must be dimensionless. We need B in the next step, so let’s solve for it now:

_ [Bb,D] . [Bb,D] _ (BF, +b,)exp(-bF.)

.B == ]
b,D by, F, [bo.f“p =b, (szz +b, )]

Where we’ve been able symbolically to divide out one factor of F,, convenient especially for
numerical computation, where overflow is an ever-present hazard. Continuing with our
numerical sample, b,F, + b, = 229/Kilo, the exponential is unity, and the numerator is

Kilo Kilo

_1688] _ 1688+844+169+85 _ 2786
Kilo

(& =1.65)*(,up

yielding B = 229/2786 = 0.0822. Most importantly, B depends only weakly on F.In
the sample case, not at all, because b, = b, =b; =0, but there are lots of other ways to

characterize the algebraic dependence of B on F;.

The next step is to account for the longitudinal slip with another helper,
S =(100 o +b,F, +b,,); in our sample case, this reduces to just § =100 o .

Only one more helper is needed, and that’s £ = (bﬁn‘i2 +b,F, + bs) , very straightforward.
The final formula is

F, = Dsin(b, tan” {s8-+ E[1an" (58) - 58 })

Once again, don’t try to find any physics in here: it’s just a convenient formula that fits the
data reasonably well. Plugging in numbers for o =0, because that’s an easy sanity check to
do in our heads, we see immediately the result is zero. Let’s try S =10, ten percent slip.

SB=0.822, tan™' (0.822) =0.688, £ =-10, so the argument of the outer arctangent is
SB—10%(-0.266) = SB +2.66 =3.48, tan™' (3.48)=1.29, 1.29 b, = 2.13,

sin(2.13) =0.848, and, finally, D*0.848 = 4720 Newtons. Lots of longitudinal force for a
3,300 N vertical load!

Let’s plot the whole formula:
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The horizontal axis measures S =100 o, which is really just slip in percent. The deep axis,

going into the page, measures F, from 5 KN, nearest us, to zero in the back. The vertical

axis measures the result of applying the formula to our model tire, so it’s longitudinal
force—force of launching or braking. Notice that for a load of 5 KN, the model tire can
generate almost 8 KN of force. Very sticky tire, as we've already noticed! Also notice that the
generated force peaks at around o = 0.08, or 8 percent. The peak would be something one
could definitely feel in the driver’s seat. Overcooking the throttle or brakes would produce a
palpable reduction in g-forces as the tires start letting go. Worse than that, increasing braking
or throttle beyond the peak leads to reduced grip. This is an instability area, whete increasing
slip leads to decreasing grip.

Finally, note that the function behaves roughly linearly with F,, showing that it acts like a
Newtonian coefficient of friction, albeit a different one for each value of slip.
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