Physics of Racing, Part 20 :
Four-Point Statics

Brian Beckman, PhD
Copyright February 02

In this installment, we analyze the stability of a single wheel, a bicycle, tricycle, and, finally, of
a four-wheeled vehicle. In the offing, we introduce force moments, vector cross products,
matrices and linear algebra, and some interesting facts about how the number of wheels on a
vehicle relate to the number of dimensions of space and to the practice of weight jacking on
a race car.

Consider a single bicycle wheel and tire combination, all by itself, just standing on the
ground. Call it a unicycle wheel. It almost immediately falls over. The reason is that its center
of gravity (CG) is above the ground, but its contact patch (CP) is ON the ground. Assuming
that the CP doesn’t slide, then the ground will resist any force put on it with an equal and
opposite force. If the wheel begins to tip ever so slightly sideways, Earth’s gravitation,
pulling on the CG, and the reaction force, pushing mostly up and a little sideways on the CP,
conspire to twist the wheel even more sideways down toward the ground. In other words, if
it tips over just a little, it will have an overwhelming tendency to tip over ALL the way. The
following figure shows the wheel precariously balanced on its CP:
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The next figure shows the wheel just starting to tip over. One can easily see that the weight,
pulling down on the CG, and the reaction force, pushing up on the CP, will quickly knock
the wheel down to the ground. At any instance of time, the tendency for the wheel to fall
over is measured by the moment of the forces about some atbitrary point. The moment of a
force about a point is the magnitude of the force times the perpendicular distance of the
force line from the point. We suggest this perpendicular distance in the following diagram
with a small right triangle. Since the CP is not sliding, by assumption, it’s fixed in inertial
space and is an ideal candidate for 2 moment center. the point about which to compute
force moments. There is also a small, sideways component to the ground’s force on the CP,

but we ignote that in the diagram.
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More generally, the moment of a force vector can be thought of as a vector in its own right
(at least in three dimensions, it can; the story is more complicated in four or more
dimensions). This vector is the cross product of the moment arm and the force vector.
The moment arm is a vector drawn from the moment center to the point of application of a
force. In the diagram above, the moment arm of the gravitational force is along the
hypotenuse of the little triangle and points upwards. The cross product of 2 moment arm, 1,
and a force, F, is defined o be a certain vector that is perpendicular to both rand F. There are
lots of vectors perpendicular to both r and F if r and F are not collinear, and there are NO
vectors perpendicular to both of them if they are collinear. In any event, we’re looking for
the particular one that satisfies some properties. Suppose t has components (7, 77, 73) and F
has components (Fx, Fy, 7). Let the vector we’re seeking be T. The conditions that T be
perpendicular to £ and to F can be written as follows (assuming you understand the much-
simpler inner product or dot product of vectors—if not, take a search for “inner products”
at http://www britanica.com, for one of many Internet sources):

Ter=0="7r+T,,+Tr,
TeF=0=TF,+T,F, +TF,

It’s easy to check that the following vector satisfies these two equations in three unknowns:
Tél’xF:(r\-‘Fz _-FZF‘I" rzF.r—r.'t‘F;’ er;' '_'ryF\‘)

It’s a little more subtle to check that the magnitude of T , written ”T" , is the magnitude of ¢

times the magnitude of F times the sin of the angle between them in the plane they form.
My favorite method is to do the calculation in that plane, where it’s easy, then to assert that
nothing in the result depends on the orientation of that plane in 3-space, so the answer must
be the same after the plane is rotated into any arbitrary orientation. For the masochist, it's
possible to prove by grinding through all the algebraic arithmetic that

I = el Fisine
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Furthermore, the cross product we need satisfies the right-hand rule, whereby t, rotated
into F by a right-handed twist, as though by turning a right-handed screw or faucet handle,
would advance the screw in the direction of T. The opposite product, Fxr, would have the
opposite sign. There are many more interesting properties of the cross product, for which
we refer you again to www.Britannica.com.

Let’s go back to our unicycle wheel. Generically, a physical system is unstable if small inputs
lead to large outputs, say, if ambient forces amplify little disturbances. The fact that our
wheel falls over with just the slightest disturbance, almost by itself, indicates that the one-
wheel system is unstable. By the way, a wide race tire will not tip over by itself until it’s
pushed sideways far enough that the line of the gravitational force vector lies outside the
edge of the tire. At that point, the restoring force, pushing up on the edge of the tire, can no
longer counteract the tipping-over, twisting tendency of gravitation. A complete, ride-able
unicycle is even zore unstable than a unicycle wheel, because a rider must also keep himself
from falling backwards or forwards by continuously adjusting pressure on the pedals. A ride-
able bicycle does not suffer forward-backward instability since the CG is between the front
CP and the rear CP. However, it does suffer left-right instability, and the rider must
continuously adjust body weight and steering input—which generates sideways restoring
force—to keep the bike from falling over. Going from one wheel to two wheels eliminates
one form of instability. How about going to three wheels?

A tricycle is optimally stable. It will sit still without tipping over, and its stability in steady-
state motion is almost exactly the same as its static—or standing-still—stability. It takes a
large disturbance to knock over a tricycle. It will tend to come back down on its wheels even
after becoming partially or completely airborne, so long as the CG stays within the bounds
of the triangular outline of the CP’s projected vertically on the ground (see the following

figure):

The stability of a tricycle is reflected in the mathematics to solve for the normal forces on
the contact patches when the tricycle is still or in steady motion in a straight line. Briefly, if
the tricycle is NOT tipping over, the sum of the moments of the normal forces must vanish
(the choice of the moment center is arbitrary, but the CG is convenient because the weight
has no moment about the CG). With reference to the preceding figure, we have the
following vector equation:

0=(r,xF,) + (nxF) + (r;xF,)
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Since the forces are normal forces, they have only Z-components—that’s what “normal”
means when speaking of forces. The cross products are quite simple, then, and work out to

be r,xF, = (r. Fos =% K 0) for i =1,2,3. Furthermore, we know that the forces must

iy iz? iz?
add up to the weight, W. We now go into the language of matrices and linear algebra to
present the solution (you know the drill: go to Britannica if you’re not comfortable), and, in
the interest of space, we omit the intermediate arithmetic, which you may check on your
own. We may write our equations as

hy

k. 0
Fix A = R
1 w1 TN w
This set of equations has a solution if and only if the determinant of the square matrix is
nonzero. This determinant is

d= x (rlr _rZy)+r2x (rly _‘r3y)+r3-x (rz_;r _rly) 3
which will vanish if all three y components of the moment arms are equal, or, for that
matter, if all three x components are equal. In other words, it will vanish if the three points
of application of the forces are collinear, in which case we have three wheels in a line and we
might as well have a bicycle as to stability. In any event, the solution turns out to be
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Obviously, there is no solution if d, the determinant, vanishes. It is an interesting exercise to
find out all the geometric circumstances in which one or more of these forces vanish or to
catalogue all the possible ways in which the determinant can vanish. I will leave these
exercises to the reader. Before leaving the tricycle, I'd like to assert without proof that the
fundamental, geometric reason we can solve for the normal forces is that ANY three points
define a plane. No matter how the tricycle is positioned on any (sufficiently horizontal)
plane, all three wheels will touch the ground and three normal forces will be generated.

We now take a huge risk and generalize TWO aspects of the model at once. First, we go to
four wheels. Second, we tilt the plane upward by a small angle £ and bank it by a small angle
B . Going to four wheels will cause our equations to break down because there is TOO
much symmetry in the vehicle and blind application of linear algebra cannot derive,
unambiguously, how the normal forces are to be apportioned among the wheels. Four points
cannot lie on a plane unless they are exquisitely balanced there. We restore sanity by
expressing the desired symmetry explicitly, and this makes for a bit of interesting math.
Physically, in a four-wheeled vehicle with a suspension, it is very easy to load wheels
preferentially by jacking the springs up or down. NASCAR crews are often furiously
spinning wrenches above the rear wheel purchases in the pits, effectively jacking weight into
ot out of wheels to adjust handling. In a three-wheeled vehicle, weight jacking is not
possible, to first order, that is, so long as the CG does not tip appreciably. Playing around a
little with the spring heights on a tricycle will not affect the weight on each wheel.

Elevating and banking the plane further complicates the math by adding angle terms to the
moment arms or to the forces, depending on point of view (we go with the latter). We turn
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on the fire hose, here, because it would take several installments to go step-by-step. We just
state the math and leave it to the adventurous reader to check it. First, a diagram:

Now, suppose the car has front track ¢, rear track 7, , distance w; from the CG to the front
axle, distance w, from the CG to the rear axle, and height h; of the CG off the ground.
The lever arms, gathered in a matrix, are

w42 —h
w42 —hs
-w, 4,/2 ~—h;
-w, —4,/2 —h

Let’s abbreviate the four normal forces to (a,b, c,d) for (F;, F. B, F;) After elevation
and banking, they are

asing acosgsinff acosecosf
bsing bcosesinff bcosecos
csing ccosgsin B ccosecos fB

dsing dcosegsinf8 dcosecosf
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The four torques are too long to write out. We’re really only interested in their sum, which
works out to be the following 3-vector:

cos& (L p, cos B+ p,sin ) Py =[(a+b)w,—(c+d)w2:|
—p,cos fcose—p,sing | where p, =|:(a—b)t, +(c-d)£2:|
p,cosgsin f—1 p,sine P = homg

and where we have replaced a+b+c+d with mg, the weight of the car, expressing force

balance. We now have three equations in four unknowns, so we cannot solve without more
information (in fact, the 4-matrix written out similarly to the tricycle example has a
symbolically vanishing determinant—not good for physics, but it is the interesting
mathematical point). Symmetry constraints are a typical way to add information, and a good
symmetry is that the ratio of the two rear forces should equal the ratio of the two front
forces, or ad = bc, expressing the circumstance that we have NOT jacked any weight into
the car. As an intermediate step, we can solve the original set of equations for a in terms of
b, c,and d , yielding

a= (bt, —ct, +dt, —2h;mg tan(ﬂ))/t,

We can go one more step by solving for b in term of ¢ and d by setting the torque in the
PITCH, or y, direction to zero, yielding

b=[(c—d)t,w +(c+d)tw, —h;mg (2w tan S —1, sec B tan a)]/Zt,w,
Let’s make a few simplifying definitions:

¢, = hymg (2w, tan B —1, sec B tan &)
¢, =h;mg (2w, tan B +1,sec ftang)

E=4w, +t,W

Writing out our symmetry equation and substituting the solutions for @ and b above, we get
(after a distressing amount of grungy grinding)

(¢*-d*)é+cg,+dg, =0

The good ol’ high-school formula for the solution of quadratic equations gives

c=[¢i2 e +adE(ds-¢;) | f2¢
d =[x ci +ac(c5+4) |28

We've gone on long enough in this article. We'll leave it to a later installment or to the reader
to wotk with some numerical values and plots.
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